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Abstract—This paper studied the recent development of  The effect 
of thermal radiation using the nonlinear Rosseland approximation, 
The paper briefly explains the relevant knowledge about relationship 
between film thickness E and the unsteadiness parameter S is found; 
the effects of unsteadiness parameter . Fluid flow with heat and mass 
transfer towards a stagnation point on a vertical plate. In this study, 
we consider both strong concentrations (n = 0) and weak 
concentrations (n = 1/2). ). Flow agree well with the exact solutions 
for traditional Navier-Stokes equation with no slip boundary 
conditions.  The governing partial differential equations are 
transformed into ordinary differential equations by using similarity 
transformations. Results of the flow characteristics are in good 
agreement with the experimental results given in the literature. The 
results for small Prandtl number (Pr).The resulting similarity 
equations are solved numerically using Runge-Kutta-Fehlberg 
method. A parametric study illustrating the influence of the 
unsteadiness parameter and Prandtl number on the fluid velocity as 
well as temperature is conducted. 
 
Keywords: Unsteady stretching surface, similarity transformation; 
heat transfer, review, Prandtl number. 

1. I-INTRODUCTION 

Fluid flow and heat transfer in a thin liquid film over a 
stretching sheet find many applications in industrial processes 
for this purpose, different methods have been developed and 
can be grouped in four main categories: analytical ,semi 
analytical, numerical and Hybrid Methods –combinations of 
three .Numerical Methods are very flexible to various 
geometries, include nonlinear and non-Homogeneous material. 
In the pioneering work of Wang [1], the flow in a thin liquid 
film past an unsteady stretching sheet was investigated. 
Recently, several authors extended Wang’s work by including 
the non-Newtonian effect of fluid, heat transfer and the thermo 
capillarity effect [2-4]. However, Numerical solutions 
provided are the most in the above studies. The objective of 
the present study is to investigate the problem of heat transfer 
over a stretching sheet with Newtonian heating (NH) and to 
see the effect of various values of Prandtl number 

However the Newtonian heating problem has been examined 
by Lesnic et al. [5] to study the free convection boundary layer 
along a vertical surface  

embedded in a porous medium. Salleh et al. [5,7] investigated 
the forced convection boundary flow at a  forward stagnation 
point with Newtonian heating as well as the boundary layer 
flow and heat transfer over a stretching sheet with Newtonian 
heating, respectively. Recently, Hayat et al. [8] addressed the 
effect of Newtonian heating on the boundary layer flow and 
heat transfer in the second grade fluid 

2. MATHEMATICAL FORMULATION 

A. Governing Equations and Boundary Conditions  
Let us consider a thin elastic sheet emerging from a narrow slit 
at the origin of a Cartesian co-ordinate system. The continuous 
sheet at  y=0  is parallel with the x-axis and moves in its own 
plane with the velocity  

U(x,t)=bx/(1-αt)              (1) 

where b and D are both positive constants with dimension per 
time. The surface temperature s T of the stretching sheet is 
assumed to vary with the distance x from the slit as 

Ts(x,t)  \=T0-Tref[bx2/2v](1-αt)3/2         (2) 

where  T0 is the temperature at the slit and  Tref can be taken as 
a constant reference temperature such that 0 ≤ Tref ≤ T0. The 
term bx2/v(1-αt)can be recognized as the Local Reynolds 
number based on the surface velocity  U Equation (1) for the 
velocity of the sheet U(x,t) reflects that the elastic sheet which 
is fixed at the origin is stretched by applying a force in the 
positive x-direction and the effective stretching rate b/(1-
αt)increases with time as 0≤α≤1 . With the same analogy the 
expression for the surface temperature Ts(x,t) Txt given by (2) 
represents a situation in which the sheet temperature decreases 
from  T0 at the slit in proportion to  x2 and such that the 
amount of temperature reduction along the sheet increases 
with time. The applied transverse magnetic field is assumed to 
be of variable kind and is chosen in its special form as 

B(x,t)=B0(1-αt)1/2                  (3) 

The particular form of the expressions for  U(x ,t)  Ts(x ,t) and  
B(x ,t) are chosen so as to facilitate the construction of a new 
similarity transformation, which enables transforming the 
governing partial differential equations of momentum and heat 
transport into a set of nonlinear ordinary differential equations. 
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Consider a thin elastic liquid film of uniform thickness h (t) 
lying on the horizontal stretching sheet (Fig. 1). The x- axis is 
chosen in the direction along which the sheet is set to motion 
and the y-axis is taken perpendicular to it. The fluid motion 
within the film is primarily caused solely by stretching of the 
sheet. The sheet is stretched by the action of two equal and 
opposite forces along the x-axis. The sheet is assumed to have 
velocity U as defined in (1) and the flow field is exposed to 
the influence of an external transverse magnetic field of 
strength B as defined in (3). We have neglected the effect of 
latent heat due to evaporation by assuming the liquid to be 
nonvolatile. 

 

Fig. 1: Physical Modal 

Further, the buoyancy is neglected due to the relatively thin 
liquid film, but it is not so thin that intermolecular forces come 
into play. The velocity and temperature fields of the liquid 
film obey the following boundary layer equations   
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Following Roseland approximation for radiation (see [10]) the 
radiative heat flux r q and is modeled as 
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where σ are the Stefan-Boltzmann constant and  k is the mean 
absorption coefficient. Assuming that temperature differences 
within the flow are sufficiently small such that T4 may be 
expressed as a linear function of temperature  T4 ≡4 T∞
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where T is the temperature across the boundary layer. We 
have supposed T as x-dependent, and in view of (8), (6) 
reduces to 
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The pressure in the surrounding gas phase is assumed to be 
uniform and the gravity force gives rise to a hydrostatic 
pressure variation in the liquid film. In order to justify the 
boundary layer approximation, the length scale in the primary 
flow direction must be significantly larger than the length 
scale in the cross-stream direction. We choose the 
representative measure of the film thickness to be (v/b) 1/2  so 
that the scale ratio is large enough i.e.  x/ (v/b) 1/2 >1 This 
choice of length scale enables us to employ the boundary layer 
approximations. Further it is assumed that the induced 
magnetic field is negligibly small.  The associated boundary 
conditions are given by 

u=U,   v=T=Ts       at   y=0            (10) 
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We make a note that the mathematical problem is implicitly 
formulated only for x≥0 . Further it is assumed that the surface 
of the planar liquid film is smooth so as to avoid the 
complications due to surface waves. The influence of 
interfacial shear due to the quiescent atmosphere, in other 
words the effect of surface tension is assumed to be negligible. 

The viscous shear stress   τ =µ( 
డ௨

డ௬
) and that the alphabetic free 

surface  at (y=h) ,the heat flux q=-k(  
డ்

డ௬
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f(β)=sβ/2                                                                 (16) 

3. NUMERICAL APPROACH 

The non-linear differential equations (13) and (14) with 
subjected to the boundary conditions (15)-(16) were solved 
numerically using by efficient Runge-Kutta-Fehlberg method 
(Conte et al. [9]). In this method third-order non-linear 
equation(13), second order equation (14) have been reduced to 
five ordinary differential equations as follows:  
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Corresponding boundary conditions take the form, 

ଵ݂ሺ0ሻ=1, ଴݂ሺ0ሻ =0, ߠ଴ሺ0ሻ =1, and 

ଶ݂ሺߚሻ =0,	ߠଵሺߚሻ =0,                        (22)           

଴݂ሺߚሻ=Sβ/2                                        (23) 

where ଴݂ሺߟሻ   = f(η) and ߠ଴ሺߟሻ ൌ θ(η)  The above boundary 
value problem is first converted into an initial value problem 
by appropriately guessing the missing slopes 

ଶ݂(0) and ߠଵ(0). The resulting IVP is solved by the shooting 
method for a set of parameters appearing in the governing 
equations and a known value of ଶ݂ (0) andߠଵ (0).The value of 
β is so adjusted that condition (23) holds. This is done on the 
trial and error basis. The value for which condition (23) holds 
is taken as the appropriate film thickness and the IVP is finally 
solved using this value of β. The step length of h = 0.01 is 
employed for the computation purpose. The convergence 
criterion largely depends on fairly good guesses of the initial 
conditions in the shooting technique. The iterative process is 
terminated until the relative difference between the current 
and the previous iterative values of f(β)matches with the value 
of Sβ/2 up to a tolerance of 10ି଺ Once the convergence is 
achieved we integrate the resultant ordinary differential 
equations using standard fourth order Runge-Kutta method 
with the given set of parameters to obtain the required 
solution. 

4. RESULTS AND DISSCUSSION 

The problem of laminar flow of liquid film due to an unsteady 
stretching sheet has been analyzed. A suitable similarity 
transformation is adopted to transform the non-linear ordinary 
differential equations. The resultant boundary value problem 
is solved by the efficient shooting method. It might be worthy 
to mention that the solution exists only for small value of 
unsteadiness parameter 0 ≤S≤2 Moreover, when  S →0 the 
solution approaches the analytical solution obtained by Crane 
[10] with infinitely thick layer of fluid (β→∞ ). E of The other 
limiting solution corresponding to S →2 represents a liquid 
film of infinitesimal thickness (β→0).  The numerical results 
are obtained for 0 ≤S≤2 . Present results compared with some 
of the earlier published results Anderson, Bilchenko et al. 
[11,12]. The effects of various parameters influencing the 
dynamics are shown in Figs. 2-5. Figures 2 and 3 depict the 
effect of M on temperature profiles for two different values of 
S. The results show that the thermal boundary layer thickness 
increases with the increasing values of M. The increasing 
frictional drag due to the Lorentz force is responsible for 
increasing the thermal boundary layer thickness. 

 

Fig. 2 

 

Fig. 3 

Figures 4 and 5 demonstrate the effect of Prandtl number Pr 
on the temperature profiles for two different values of 
unsteadiness parameter S. These plots reveal the fact that for a 
particular value of Pr the temperature increases monotonically 
from the free surface temperature  Ts to wall velocity  T0 as 
observed in Anderson et al [13]. The thermal boundary layer 
thickness decreases drastically for high values of Pr i.e., low 
thermal diffusivity. 

 

Fig.4 

 

Fig. 5 
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The velocity and temperature profiles for a thin film over an 
unsteady stretching sheet are presented in Fig.5 by Sidorov 
[14]. 

5. CONCLUSION 

In this paper, we investigate the combined effects of variable 
transverse magnetic field and thermal radiation effect. Present 
results reveal that the magnetic field effects play significant 
role on controlling the heat transfer from stretching sheet to 
the liquid film. The important findings of the present analysis 
are: 

The effect of transvers magnetic field on a viscous 
incompressible electrically conducting fluid is to suppress the 
velocity field, which in turn causes the enhancement of the 
temperature field. 

An increasing Prandtl number Pr causes dimension in the 
thickness of thermal boundary layer. 

The effect of the thermal radiation parameter produces a 
significant increase thickness of the thermal boundary layer of 
the liquid film and so temperature increase 
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